$$ [ x^n + y^n = z^n ] $$
$$ \displaystyle \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }(ϕ5−ϕ)e52π1=1+1+1+1+1+⋯e−8πe−6πe−4πe−2π $$
$$ \displaystyle \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)(k=1∑nakbk)2≤(k=1∑nak2)(k=1∑nbk2) $$
$$ \displaystyle {1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots }= \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for }\lvert q\rvert<1.1+(1−q)q2+(1−q)(1−q2)q6+⋯=j=0∏∞(1−q5j+2)(1−q5j+3)1,for ∣q∣<1. $$
This is an example of an inline equation: $y = mx + b$
$500ms + 80ms + 500ms = 1080ms = 1.08 seconds$
You can also add formatting:
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$